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ABSTRACT
Genome-wide association studies (GWAS) are designed to identify individual 

regions associated with cancer risk, but only explain a small fraction of the inherited 
variability. Alternative approach analyzing genetic variants within biological pathways 
has been proposed to discover networks of susceptibility genes with additional 
effects. The gene set enrichment analysis (GSEA) may complement and expand 
traditional GWAS analysis to identify novel genes and pathways associated with 
bladder cancer risk. We selected three GSEA methods: Gen-Gen, Aligator, and the 
SNP Ratio Test to evaluate cellular signaling pathways involved in bladder cancer 
susceptibility in a Texas GWAS population. The candidate genetic polymorphisms 
from the significant pathway selected by GSEA were validated in an independent 
NCI GWAS. We identified 18 novel pathways (P < 0.05) significantly associated with 
bladder cancer risk. Five of the most promising pathways (P ≤ 0.001 in any of the 
three GSEA methods) among the 18 pathways included two cell cycle pathways and 
neural cell adhesion molecule (NCAM), platelet-derived growth factor (PDGF), and 
unfolded protein response pathways. We validated the candidate polymorphisms in 
the NCI GWAS and found variants of RAPGEF1, SKP1, HERPUD1, CACNB2, CACNA1C, 
CACNA1S, COL4A2, SRC, and CACNA1C were associated with bladder cancer risk. 
Two CCNE1 variants, rs8102137 and rs997669, from cell cycle pathways showed 
the strongest associations; the CCNE1 signal at 19q12 has already been reported in 
previous GWAS. These findings offer additional etiologic insights highlighting the 
specific genes and pathways associated with bladder cancer development. GSEA may 
be a complementary tool to GWAS to identify additional loci of cancer susceptibility. 

INTRODUCTION

Urinary bladder cancer is the fourth most common 
cancer in men in U.S. Estimates in 2015 indicate urinary 
bladder cancer affects 56,320 males and 17,680 females, 
and will lead to 16,000 deaths in the U.S. [1] . Bladder 
cancer is a heterogeneous disease attributed to many 
risk factors. The number one risk factor is tobacco 

smoking, which explains 30-50% of bladder cancer risk 
[2]. Occupational exposure to chemicals [3, 4], genetic 
factors, and other environmental factors such as dietary 
factors, lifestyle factors, medical factors, fluid intake, also 
contribute to bladder cancer carcinogenesis [5], although 
some of the risk factors are inconclusive and vary in 
different studies. There is substantial evidence that there 
is an important genetic contribution to susceptibility to 
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bladder cancer, initially based on familial clustering of 
bladder cancer. Epidemiologic studies have demonstrated 
a two-fold elevation in bladder cancer risk among first-
degree relatives of bladder cancer patients [6, 7]. A 
segregation analysis in 1,193 families suggests a paucity 
of high penetrance gene for sporadic bladder cancer but 
instead many low penetrance genes with modest effects 
[8], indicative of a complex, polygenic model [9]. A large 
population based twin study evaluated the contribution 
of hereditary factors to the causation of various sporadic 
cancers and estimated the genetic contribution of bladder 
cancer to be roughly 30% [10]. 

Approaches towards mapping cancer susceptibility 
regions have undergone an evolution due to the recent 
annotation of variation across the genome as well as 
technical advances in single nucleotide polymorphism 
(SNP) arrays [11]. The candidate gene approach was 
pursued in the beginning but with very few successes 
that replicated in subsequent studies. In recent years, the 
emergence of genome-wide association studies (GWAS) 
has substantially advanced the field of identifying novel 
cancer susceptibility loci. Currently, bladder cancer 
GWAS have identified nine novel loci including 18q12.3 
(urea transport, SLC14A1, intron), 8q24.21 (oncogene 
MYC, intergenic region), 4p16.3 (fibroblast growth factor, 
FGFR3, intron), 22q13.1 (apolipoprotein B mRNA-editing 
enzyme catalytic polypeptide-like 3A, APOBEC3A, 
intergenic region), 19q12 (cyclin E1, CCNE1, intergenic 
region), 8q24.3 (prostate stem cell antigen, PSCA, 
missense mutation), 3q28 (tumor protein p63, TP63, 
intergenic region), 2q37.1(UDP-glycosyltransferase 1 
family polypeptide A1, UGT1A, intron), and 5p15.33 
(telomerase reverse transcriptase, TERT, intron) [12-18]. 
In addition, two previously reported bladder cancer risk 
loci 1p13.3 (glutathiones transferase, GSTM1, deletion) 
and 8p22 (N-acetyltransferase 2, NAT2, intergenic region) 
were further validated in the GWAS studies [17, 19, 20]. 

Recent GWAS have provided valuable insights 
into the genetic basis of human disease but GWAS do 
not fully explain heritability in sporadic cancers [21]. So 
far, the low estimated effect sizes of the individual SNPs 
account for a small portion of the heritability of bladder 
cancer. In addition, majority of disease associated SNPs 
found in GWAS are tagging SNPs at non-genic regions 
without clear functional implication (http://www.genome.
gov/gwastudies/). They may be highly correlated with 
the variants directly associated with bladder cancer 
susceptibility [22]. 

Gene set enrichment analysis (GSEA), also known 
as pathway based analysis, examines whether the test 
statistics for a group of common genetic variants that 
map to predefined gene sets (e.g., gene set from pathways 
defined by prior biological knowledge) support the 
possibility of disease association [23]. To date, GSEA 
have been applied to explore the critical pathways and 

genes of several diseases and traits, including Crohn’s 
disease [24], rheumatoid arthritis [25, 26], multiple 
sclerosis [25, 27], diabetes [25], Parkinson’s disease [25, 
28, 29], bipolar disorder [25, 30], coronary artery disease 
[25], hypertension [25], age-related eye disease [25, 28], 
adult heights [31], colon cancer [32], breast cancer [33], 
and bladder cancer [34] . 

RESULTS

A total of 781 pathways, including those from 
KEGG (http://www.genome.jp/kegg/), Biocarta (http://
cgap.nci.nih.gov/Pathways/BioCarta_Pathways), 
and Reactome (http://www.reactome.org/) databases 
were included in the GSEA of bladder cancer GWAS 
(Supplementary Figure 1). A quantile-quantile plot of 
observed versus expected chi2 test statistics showed no 
evidence for inflation in the Texas population (inflation 
factor 0.995)(Figure 1). We identified 85 possibly 
significant pathways associated with bladder cancer 
risk by Gen-Gen method alone (Supplementary Table 
1), 44 significant pathways by Aligator (Supplementary 
Table 2), and 68 significant pathways by SNP Ratio Test 
(Supplementary Table 3). The results from the above three 
GSEAs (Gen-Gen, SNP Ratio Test, and Aligator) were 
consistent that we identified 18 novel pathways (P < 0.05) 
significantly associated with bladder cancer risk in all 
three GSEA methods (Table 1) from the Texas population. 
Top five pathways (P ≤ 0.001 in any of the three GSEA 
methods) among the 18 pathway included two cell cycle 
pathways involved in the G1/S transition (PGenGen: 0.001, 
PAligator: 0.001, PSRT: 0.002), neural cell adhesion molecule 
(NCAM) pathway (PGenGen: < 0.001, PAligator: 0.020, PSRT: 
0.014), platelet-derived growth factor (PDGF) induced 
intracellular pathway (PGenGen: < 0.001, PAligator: 0.026, PSRT: 
0.006) and unfolded protein response pathway (PGenGen: 
0.007, PAligator: 0.001, PSRT: < 0.001) (Table 1). We grouped 
these five significant pathways into three categories based 
on functional similarity:

Cell cycle related pathways

The two significant pathways, “BIOCARTA_
RACCYCD_PATHWAY” and “BIOCARTA_SKP2E2F_
PATHWAY”, were both related to cell cycle, specifically 
genes critical for G1 and S phase (Table 2 and 
Supplementary Figure 2A). In our GSEA, “BIOCARTA_
RACCYCD_PATHWAY” (http://www.biocarta.com/
pathfiles/h_RacCycDPathway.asp) contains 300 SNPs 
from 26 genes, and “BIOCARTA_SKP2E2F_PATHWAY” 
(http://www.biocarta.com/pathfiles/h_skp2e2fPathway.
asp) consists of 115 SNPs from 10 genes. Five genes 
(E2F1, TFDP1, CDK2, RB1, and CCNE1) overlapped in 
these two pathways (Table 2 and Supplementary Figure 

http://www.genome.gov/gwastudies/
http://www.genome.gov/gwastudies/
http://www.genome.jp/kegg/
http://cgap.nci.nih.gov/Pathways/BioCarta_Pathways
http://cgap.nci.nih.gov/Pathways/BioCarta_Pathways
http://www.reactome.org/
http://www.biocarta.com/pathfiles/h_RacCycDPathway.asp
http://www.biocarta.com/pathfiles/h_RacCycDPathway.asp
http://www.biocarta.com/pathfiles/h_skp2e2fPathway.asp
http://www.biocarta.com/pathfiles/h_skp2e2fPathway.asp
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2A). We also examined the individual SNP association for 
variants located in genes from the two pathways and then 
queried the significant SNPs (P < 0.05) in the NCI bladder 
cancer GWAS for validation (Table 3). Three SNPs 
from “BIOCARTA_RACCYCD_PATHWAY”, and four 
SNPs from “BIOCARTA_SKP2E2F_PATHWAY” were 
significant in the Texas population, NCI population, and 
pooled analysis. Three significant SNPs were in CCNE1 
gene: rs8102137 (PTexas = 0.0003, PNCI = 0.0005, PPooled = 
1×10-6), rs997669 (PTexas = 0.0031, PNCI = 0.0019, PPooled = 
3.6×10-5), and rs4804903 (PTexas = 0.0458, PNCI = 0.0019, 
PPooled = 0.001), which were not in linkage disequilibrium 
and were the overlapping SNPs co-existed in the two cell 
cycle pathways (Table 3). In addition, SKP1 rs10491321 
from “BIOCARTA_SKP2E2F_PATHWAY” remained 
significant after validation (PTexas = 0.0206, PNCI = 0.0035, 
PPooled = 0.0004) (Table 3). Imputation of CCNE1 and SKP1 
region showed that the strongest signals in the region of 
interest are CCNE1 rs60560217 (Chr19: 30288545) and 
SKP1 rs7701836 (Chr5: 133539947) (Figure 2A and 2B), 
which are in strong linkage disequilibrium (R2 > 0.7) 
with CCNE1 rs8102137 and SKP1 rs10491321, a region 
already identified in previous GWAS [15].

Figure 1: Q-Q plot of observed versus expected chi2 
test statistics in Texas population.

Table 1:  Significant pathways from the three gene set enrichment analyses
Gen-Gen Aligator SNP Ratio Test

Pathway P Rank P Rank P Rank

REACTOME_SIGNALING_BY_PDGF <0.001 1 0.0264 25 0.005994 5

REACTOME_NCAM_SIGNALING_FOR_NEURITE_OUT_GROWTH <0.001 1 0.0198 21 0.013986 12

BIOCARTA_RACCYCD_PATHWAY 0.001 2 0.0012 2 0.001998 2

BIOCARTA_SKP2E2F_PATHWAY 0.001 2 0.0016 3 0.011988 10

BIOCARTA_NDKDYNAMIN_PATHWAY 0.003 4 0.007 8 0.08991 56

REACTOME_NCAM1_INTERACTIONS 0.005 6 0.009 11 0.025974 21

BIOCARTA_P27_PATHWAY 0.005 6 0.0044 6 0.021978 18

REACTOME_UNFOLDED_PROTEIN_RESPONSE 0.007 8 0.0008 1 0.000999 1
REACTOME_INACTIVATION_OF_APC_VIA_DIRECT_INHIBITION_
OF_THE_APCOMPLEX 0.008 9 0.0368 30 0.002997 3

BIOCARTA_BAD_PATHWAY 0.009 10 0.0496 38 0.008991 7
REACTOME_CONVERSION_FROM_APC_CDC20_TO_APC_CDH1_IN_
LATE_ANAPHASE 0.013 13 0.0484 37 0.016983 14

BIOCARTA_NFAT_PATHWAY 0.017 16 0.0036 4 0.013986 12

REACTOME_CTLA4_INHIBITORY_SIGNALING 0.018 17 0.0392 32 0.027972 22

REACTOME_PHOSPHORYLATION_OF_THE_APC 0.018 17 0.0376 31 0.010989 9

REACTOME_APCDC20_MEDIATED_DEGRADATION_OF_CYCLIN_B 0.019 18 0.0392 32 0.00999 8

KEGG_PROSTATE_CANCER 0.02 19 0.004 5 0.036963 29
REACTOME_SYNTHESIS_OF_BILE_ACIDS_AND_BILE_SALTS_
VIA_24_HYDROXYCHOLESTEROL 0.025 22 0.007 8 0.048951 36

BIOCARTA_DC_PATHWAY 0.044 34 0.0138 17 0.005994 5

The pathways discussed in detail were in bold
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Growth factor mediated intracellular signaling

There were two growth factor mediated 
intracellular signaling pathways significant in GSEA 
analysis. Neural cell adhesion molecule (NCAM) 
pathway, (“REACTOME_NCAM_SIGNALING_FOR_
NEURITE_OUT_GROWTH”: http://www.reactome.
org/entitylevelview/PathwayBrowser.html#DB = gk_
current&FOCUS_SPECIES_ID = 48887&FOCUS_
PATHWAY_ID = 375165&ID = 375165) was composed 
of 2,232 SNPs from 69 genes, and platelet-derived 
growth factor (PDGF) induced intracellular pathway 
(“REACTOME_SIGNALING_BY_PDGF”: http://www.
reactome.org/entitylevelview/PathwayBrowser.html#DB 
= gk_current&FOCUS_SPECIES_ID = 48887&FOCUS_
PATHWAY_ID = 186797&ID = 186797) consisted of 
1,423 SNPs from 64 genes (Table 1 and Table 2). There 
were 31 overlapping genes co-existed in these two 
pathways (Table 2). After validation in NCI population, 
eleven SNPs in 5 genes of the “REACTOME_NCAM_
SIGNALING_FOR_NEURITE_OUT_GROWTH” 
pathway, including CACNB2 rs12416052, rs17611556; 
CACNA1C rs1990240, rs2239062, rs2239117, rs2239118, 
rs7132154, rs7963955; CACNA1S rs3767499; COL4A2 
rs418543; and SRC rs6011959, and three SNPs COL4A2 
rs418543, SRC rs6011959, and RAPGEF1 rs7040470 
from the “REACTOME_SIGNALING_BY_PDGF” 
pathway remained significant with P value less than 0.005 
in pooled analysis (Table 3). Among them, SRC rs6011959 
and COL4A2 rs418543 were overlapping SNPs in two 
pathways, while RAPGEF1 rs7040470 was the most 
significant SNP in this PDGF mediated pathway with 
pooled P value of 1.2 x 10-5. For all these genes, the most 

significant SNPs in imputation were labeled in Figure 2C. 
The top signals of CACNA1C are chr12:2659044:D and 
rs11062272 which are in linkage disequilibrium (R2 > 0.7) 
with the validated SNPs rs2239117 and rs2239118 (Figure 
2C).

Unfolded protein response

Unfolded protein response (UPR) pathway 
(REACTOME_UNFOLDED_PROTEIN_RESPONSE:      
http://www.reactome.org/entitylevelview/
pathwayBrowser.html#DB = gk_current&FOCUS_
SPECIES_ID = 48887&FOCUS_PATHWAY_ID = 
381119&ID = 381160&VID = 3079930) with 257 SNPs 
from 19 genes showed strongest enrichment signal based 
on Aligator (P = 0.0008) and SNP Ratio Test (P = 0.0009), 
and ranked top 8 in Gen-Gen (P = 0.007) (Table 2 and 
Supplementary Figure 2D). However, after validation, 
only one SNP rs2518054 at HERPUD1 was significant in 
the Texas population with P = 0.0193, in NCI population 
with P = 0.0312, and in pooled analysis with P = 0.0017 
(Table 3). The top signal in imputation is not linked with 
the validated SNP in HERPUD1 (data not shown).

DISCUSSION

In this study, we pursued a pathway approach in 
the Texas bladder cancer GWAS data using three GSEA 
methods including Gen-Gen, Aligator, and SNP Ratio 
Test. We identified 18 promising pathways out of 781 
predefined gene-sets, which were associated with bladder 
cancer risk according to our screening criteria. The top 
five significant pathways involved cell cycle control at 

Figure 2: The imputation of gene regions of interest using 1000 genomes data (black dot) along with Texas Bladder 
Cancer GWAS data (gray dot). The SNPs indicated by triangles were those validated in NCI population. Top three gene regions 
in which top signals from imputation are in strong linkage disequilibrium (R2 > 0.7) with the SNPs validated in both Texas and NCI 
populations are displayed. A. CCNE1; B. SKP1; C. CACNA1C.

http://www.reactome.org/entitylevelview/PathwayBrowser.html#DB=gk_current&FOCUS_SPECIES_ID=48887&FOCUS_PATHWAY_ID=186797&ID=186797
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http://www.reactome.org/entitylevelview/PathwayBrowser.html#DB=gk_current&FOCUS_SPECIES_ID=48887&FOCUS_PATHWAY_ID=186797&ID=186797
http://www.reactome.org/entitylevelview/PathwayBrowser.html#DB=gk_current&FOCUS_SPECIES_ID=48887&FOCUS_PATHWAY_ID=381119&ID=381160&VID=3079930
http://www.reactome.org/entitylevelview/PathwayBrowser.html#DB=gk_current&FOCUS_SPECIES_ID=48887&FOCUS_PATHWAY_ID=381119&ID=381160&VID=3079930
http://www.reactome.org/entitylevelview/PathwayBrowser.html#DB=gk_current&FOCUS_SPECIES_ID=48887&FOCUS_PATHWAY_ID=381119&ID=381160&VID=3079930
http://www.reactome.org/entitylevelview/PathwayBrowser.html#DB=gk_current&FOCUS_SPECIES_ID=48887&FOCUS_PATHWAY_ID=381119&ID=381160&VID=3079930
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G1 and S phase, NCAM and PDGF induced intracellular 
signaling, and unfolded protein response. From these top 
five pathways, 17 SNPs from CCNE1, RAPGEF1, SKP1, 
HERPUD1, CACNB2, CACNA1C, CACNA1S, COL4A2, 
SRC, CACNA1C, appear to be associated with bladder 
cancer risk and were subsequently observed in the NCI 
bladder cancer GWAS.

The pathways highlighted were two cell cycle 
related pathways “BIOCARTA_RACCYCD_PATHWAY”, 
and “BIOCARTA_SKP2E2F_PATHWAY” at G1 and 
S phase (Supplementary Figure 2A). The G1/S phase 
transition is the rate-limiting step in cell cycle. This 
process is sequentially and coordinately regulated by the 

formation of several Cyclin-Cyclin Dependent Kinase 
(CDK) complexes, for example, Cyclin-D -CDK4/6 
complex for G1 progression, Cyclin-E -CDK2 complex 
for the G1-S transition, and Cyclin-A -CDK2 complex 
for S-phase progression [35, 36]. Disruption of these 
complexes leads to either cell cycle arrest or uncontrolled 
cell cycle proliferation. Somatic and germline alterations 
of this pathway had been found in bladder cancer and other 
tumors [37-40]. In particular, the expression of Cyclin E1 
has been correlated with more advanced and invasive 
bladder cancer, as well as poor clinical outcomes [41]. In 
our GSEA, the most significant SNP after validation in 
NCI population is CCNE1 rs8102137, which maps to the 

Table 2: Genes contained in significant pathways
REACTOME_
SIGNALING_
BY_PDGF

HRAS* PDGFB PDGFA BCAR1 STAT5A STAT5B PIK3CA PDGFC PDGFD RAPGEF1

PIK3CB MAPK1* NCK2 CRKL NCK1 MAPK3* COL1A2* PDGFRA PDGFRB COL1A1*

64 genes GRB2* COL3A1* COL2A1* SRC* STAT6 COL9A1* COL9A2* COL9A3* KRAS* COL6A6*

SOS1* COL6A3* COL6A2* COL6A1* THBS1 THBS2 PIK3R1 THBS3 RASA1 PIK3R2

THBS4 SPP1 COL4A4* PLAT COL4A3* COL4A2* COL4A1* MAP2K1* MAP2K2* YWHAB*

RAF1* STAT1 COL5A2* FURIN PLG STAT3 COL5A1* COL4A5* PTPN11 NRAS*

PLCG1 COL29A1* CRK GRB7

REACTOME_
NCAM_
SIGNALING_
FOR_
NEURITE_OUT_
GROWTH

NRTN HRAS* GDNF ARTN NCAM1 MAPK1* MAPK3* CNTN2 COL1A2* COL1A1*

PRNP NCAN SPTB FGFR1 GRB2* COL3A1* CACNB1 CACNB2 COL2A1* CACNB3

69 genes CACNB4 ST8SIA2 SRC* COL9A1* COL9A2* PTK2 COL9A3* KRAS* COL6A6* SOS1*

COL6A3* COL6A2* COL6A1* AGRN COL4A4* COL4A3* COL4A2* COL4A1* MAP2K1* SPTBN5

MAP2K2* CREB1 CACNA1I SPTBN4 PTPRA YWHAB* RAF1* COL5A2* CACNA1S COL5A1*

COL4A5* RPS6KA5 PSPN NRAS* FYN ST8SIA4 CACNA1G SPTBN2 CACNA1H SPTBN1

GFRA1 COL29A1* SPTA1 CACNA1F GFRA4 CACNA1C CACNA1D GFRA2 SPTAN1

BIOCARTA_
RACCYCD_
PATHWAY

E2F1* HRAS NFKBIA NFKB1 AKT1 CCNE1* RAC1 RHOA PIK3CA PAK1

CHUK PIK3R1 TFDP1* RELA RAF1 CDK6 RB1* CDK4 CDK2* MAPK1

26 genes CCND1 CDKN1A CDKN1B IKBKG MAPK3 IKBKB

BIOCARTA_
SKP2E2F_
PATHWAY  /  10 
genes

CDC34 CCNA1 E2F1* CUL1 TFDP1* CDK2* RB1* CCNE1* SKP2 SKP1

REACTOME_
UNFOLDED_
PROTEIN_
RESPONSE

HERPUD1 MBTPS2 PDIA6 NFYA EDEM1 DDIT3 ATF6 ATF4 ATF3 DNAJB9

19 genes DNAJB11 XBP1 EIF2S1 ERN1 HSPA5 DNAJC3 MBTPS1 EIF2AK3 SERP1  

*The overlapping genes in “REACTOME_SIGNALING_BY_PDGF” and “REACTOME_NCAM_SIGNALING_FOR_NEURITE_OUT_GROWTH”, and “BIOCARTA_RACCYCD_PATHWAY” and 
“BIOCARTA_SKP2E2F_PATHWAY” were indicated by asterisk.
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chromosome 19q12 at the 5’ flanking region of CYCLIN 
E1 gene with P value of 1×10-6 (Table 3). This SNP has 
been reported in previous GWAS, which is reassuring for 
the analytical approach [15]. CCNE1 rs8102137 is also 
linked with the top signal rs60560217 in our imputation 
results (Figure 2A). There were no functional implications 
for rs60560217. Rs997669, located at the intron 4 of 
CCNE1, was significantly associated with bladder cancer 

risk (pooled P value of 3.6×10-5) independent of the above 
two SNPs. 

In the “REACTOME_NCAM_SIGNALING_FOR_
NEURITE_OUT_GROWTH” pathway (Supplementary 
Figure 2B), the neural cell adhesion molecule, NCAM, 
belongs to the immunoglobulin superfamily. The NCAM 
induced intracellular signaling not only functions 
in neuronal differentiation, synaptic plasticity, and 

Table 3: Validated SNPs from significant pathways in independent populations
      Texas   NCI   Meta-

Analysis  

Case Control   Case Control   Case Control  

SNP Gene MAF MAF P MAF MAF P MAF MAF P

REACTOME_NCAM_SIGNALING_FOR_NEURITE_OUT_GROWTH

rs12416052 CACNB2 0.43 0.4 0.024 0.43 0.41 0.0488 0.43 0.41 0.00638

rs17611556 CACNB2 0.06 0.09 0.0148 0.06 0.07 0.0185 0.06 0.08 0.00194

rs1990240 CACNA1C 0.28 0.25 0.0163 0.28 0.26 0.0206 0.28 0.26 0.00229

rs2239062 CACNA1C 0.44 0.41 0.0194 0.46 0.44 0.0188 0.46 0.44 0.00353

rs2239117 CACNA1C 0.28 0.25 0.0097 0.28 0.27 0.0452 0.28 0.26 0.00491

rs2239118 CACNA1C 0.25 0.21 0.0024 0.25 0.23 0.0447 0.25 0.23 0.0024

rs3767499 CACNA1S 0.5 0.47 0.0325 0.49 0.47 0.0198 0.49 0.47 0.00224

rs418543* COL4A2 0.37 0.33 0.0098 0.36 0.34 0.0049 0.36 0.34 0.00026

rs6011959* SRC 0.31 0.28 0.032 0.28 0.26 0.0051 0.29 0.26 0.00019

rs7132154 CACNA1C 0.24 0.27 0.0313 0.23 0.25 0.0008 0.23 0.26 0.00011

rs7963955 CACNA1C 0.28 0.25 0.0149 0.28 0.26 0.0219 0.28 0.26 0.00231

REACTOME_SIGNALING_BY_PDGF

rs418543* COL4A2 0.37 0.33 0.0098 0.36 0.34 0.0049 0.36 0.34 0.00026

rs6011959* SRC 0.31 0.28 0.032 0.28 0.26 0.0051 0.29 0.26 0.00019

rs7040470 RAPGEF1 0.42 0.46 0.0089 0.43 0.46 0.0004 0.43 0.46 1.20E-05

BIOCARTA_RACCYCD_PATHWAY

rs4804903* CCNE1 0.3 0.34 0.0019 0.33 0.34 0.0458 0.32 0.34 0.00106

rs8102137* CCNE1 0.38 0.32 0.0006 0.35 0.33 0.0003 0.36 0.33 1.43E-06

rs997669* CCNE1 0.44 0.39 0.0019 0.42 0.39 0.0031 0.42 0.39 3.61E-05

BIOCARTA_SKP2E2F_PATHWAY

rs10491321 SKP1 0.16 0.2 0.0035 0.19 0.2 0.0206 0.18 0.2 0.00045

rs4804903* CCNE1 0.3 0.34 0.0019 0.33 0.34 0.0458 0.32 0.34 0.00106

rs8102137* CCNE1 0.38 0.32 0.0006 0.35 0.33 0.0003 0.36 0.33 1.43E-06

rs997669* CCNE1 0.44 0.39 0.0019 0.42 0.39 0.0031 0.42 0.39 3.61E-05

REACTOME_UNFOLDED_PROTEIN_RESPONSE

rs2518054 HERPUD1 0.13 0.11 0.0312 0.11 0.1 0.0193 0.12 0.1 0.00168

* “REACTOME_SIGNALING_BY_PDGF” and “REACTOME_NCAM_SIGNALING_FOR_NEURITE_OUT_GROWTH” had overlapping SNPs. The 
shared SNPs and Genes were indicated by asterisk.
“BIOCARTA_RACCYCD_PATHWAY” and “BIOCARTA_SKP2E2F_PATHWAY” had overlapping SNPs. The shared SNPs and Genes were indicated by 
asterisk.
MAF- minor allele frequency
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regeneration, but is also involved in the regulation of 
growth factor signaling, and cytoskeletion, etc. In the 
“REACTOME_SIGNALING_BY_PDGF” pathway 
(Supplementary Figure 2C), the binding of Platelet-
derived growth factors (PDGF) to its two tyrosine 
kinase receptor induces the receptor dimerization and 
autophosphorylation, and enables the activation of 
many downstream molecules, such as SRC, PI3K, CRK, 
STAT, SHP-2, NCK, GAP, SHC, GRB2, GRB7, and 
PLC-γ1. Therefore PDGF can elicit the crosstalk of many 
downstream pathways, for example RAS-RAF-MEK-
MAPK and PI3K-AKT pathways, to influence diverse 
functions, such as cell growth and motility [42]. 

In growth factor mediated intracellular pathways 
(Supplementary Figure 2B and 2C), RAPGEF1 rs7040470 
was significantly associated with bladder cancer risk and 
the significance level reached 1.2×10-5 in the pooled 
analysis (Table 3). RAPGEF1 maps to 9q34.13 and 
encodes the RAP guanine nucleotide exchange factor 1. 
RAPGEF1 regulates the RAS-CRK-RAP1 cellular signal 
transduction system which has shown abnormality in lung 
carcinogenesis [43, 44]. Rs7040470 is at the downstream 
near gene region of RAPGEF1. 

UPR contributes to a critical decision point between 
homeostasis or apoptosis of cell (Supplementary Figure 
2D). During the ER stress, UPR initially decreases protein 
translation and enhances the unfolded protein degradation 
response to enforce the cell to maintain a homeostastic 
status [45]. If unable to maintain homeostasis within a 
certain time, the cell will commit apoptosis. In the UPR 
pathway (Supplementary Figure 2D), rs2518054 of 
HERPUD1was the only significant SNP validated with 
pooled P value 0.002 (Table 3). HERPUD1, located at 
16q13, is an endoplasmic reticulum (ER) resident protein 
which is up-regulated in response to ER stress [46]. 
Interestingly, variants in HERPUD1 have been associated 
with the metabolic syndrome in GWAS [47-49] .

The GSEA method is an attractive approach 
for identifying additional susceptibility signals but it 
does require both larger sample sizes and independent 
replication sets to conclusively establish novel loci. 
GSEA can detect evidence for subtle effects of multiple 
SNPs in the same gene set, though it does not dissect 
pleiotropy in a given region. In our GSEA, we not only 
validated one SNP at CCNE1 from previous GWAS, but 
also highlighted several novel SNPs, genes, and pathways 
potentially involved in bladder cancer tumorigenesis 
(Tables 1-3). Since GSEA grouped millions of SNPs into 
hundreds of gene sets, the burden of multiple comparisons 
have been greatly reduced. In addition, incorporation of 
the biological knowledge into statistical analysis renders 
our finding more relevant to biological interpretation. The 
biggest challenge for GSEA is how to define a gene set as 
misclassification leads directly to a loss of power. Due to 
the complexity of cell biology, some of the gene sets will 
be inevitably redundant or overlapping. Thus, associations 

could be driven by significant genes that are overlapped 
in different pathways. Another major limitation of GSEA 
is that it can only assess SNPs in or near gene regions so 
non-genic variants are not considered. Furthermore, the 
analysis assumes SNPs having only local cis-effects, an 
assumption that may be limiting. Finally, we only validated 
the genes and SNPs but not the pathways associated with 
bladder cancer risk since the NCI data was derived from 
multiple GWAS genotyping panels (HumanHap 1M, 
HumanHap610-Quad, HumanHap610, and HumanHap550 
equivalents) compared to the MD Anderson data of using 
a single beadchip (HumanHap610). Differences in gene 
coverage and the selection of tagSNPs for each gene 
region in the various Illumina GWAS panels precluded us 
from confirming the results at the pathway level.

In summary, we implemented three different 
GSEA methods as internal validation to identify the 
biological pathways consistently associated with 
bladder cancer risk and also validated our results in an 
independent NCI population, which may reduce false 
discovery in our findings. GSEA is a complementary 
tool to identify additional genetic contributions to the 
heritability of bladder cancer, and may also be applicable 
to clinical outcome studies [50] by incorporating the 
biological pathway information into GWAS analysis. 
Our findings may pinpoint potential pathway targets for 
cancer prevention and treatment and to improve the risk 
prediction model of bladder cancer. However, to pursue 
these strategies, further research are needed to validate, 
fine-map and conduct functional characterization to 
pinpoint the variants directly associated with bladder 
cancer risk. 

MATERIALS AND METHODS

Study population for primary GWAS

Study population was derived from our previous 
published GWAS (14), which included a total of 969 
Caucasian cases and 957 Caucasian controls. Cases were 
recruited from MD Anderson Cancer Center and Baylor 
College of Medicine between 1999 and 2007. They were 
newly diagnosed bladder cancer patients, histologically 
confirmed, and previously untreated (ICD codes 188.1-
188.9). There were no restrictions on age, sex, ethnicity, 
and cancer stage in case recruitment. Control subjects 
were recruited from Kelsey Seybold clinics and were 
frequency-matched to cases by age (±5 years), sex and 
ethnicity. We restricted our analysis to Caucasians, 
due to the small number of minority participants in our 
population. All epidemiology data were collected by 
trained interviewers after signing of the consent form 
by study participants. The study was approved by the 
institutional review boards of MD Anderson Cancer 

http://omim.org/geneMap/9/419?start=-3&limit=10&highlight=419
http://omim.org/geneMap/16/337?start=-3&limit=10&highlight=337
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Center, Baylor College of Medicine, and Kelsey-Seybold 
Clinic. No inflation was found in the study population 
structure [14]. All leukocyte DNAs were genotyped 
by Illumina HumanHap610 chip. Quality control for 
genotyping has been described previously (14). Briefly, 
cases and controls were excluded from analysis if they 
had genotyping call rates less than 95%; were found on 
review not to be of European ancestry; or were found to be 
duplicated samples, not matched according to established 
criteria, or to have reported a sex that did not match 
with X chromosome heterozygosity. We also excluded 
samples that deviated by more than 4 standard deviation 
from other study subjects using similarity in genotypes 
implemented in PLINK [51]. We randomly selected 2% 
of the samples for duplicate genotyping. The concordance 
of SNP genotype calls was > 99% for duplicated samples. 
Among the 620,901 markers on HumanHap610 chip, 
we excluded those that were copy number variation 
markers, did not yield genotypes, variants with minor 
allele frequency (MAF) less than 0.01 or with call rate < 
95%. We further removed SNPs that deviated from Hardy-
Weinberg equilibrium in the controls at P < 0.0001. These 
procedures left 556,429 SNPs for the final analysis. 

The validation population consists of the primary 
scan of the NCI bladder cancer GWAS (available on 
dbGaP), which includes five studies with 3,532 cases 
and 5,120 controls of European ancestry [15, 34]. These 
five studies are Spanish Bladder Cancer Study (SBCS), 
New England, Maine and Vermont Bladder Cancer Study 
(NEBCS-ME/VT), Alpha-Tocopherol, Beta-Carotene 
Cancer Prevention Study (ATBC), the American Cancer 
Society Cancer Prevention Study II Nutrition Cohort 
(CPS-II), and the Prostate, Lung, Colorectal and Ovarian 
Cancer Screening Trial (PLCO). The same ICD codes as 
Texas GWAS were used for patient selection.

Pathway definition and annotation

The molecular signature database (http://www.
broadinstitute.org/gsea/msigdb/) from Broad Institute 
was used to define gene sets/pathways, which were 
composed of positional gene sets, curated gene sets, 
motif gene sets, computational gene sets and GO gene 
sets. We downloaded the 880 canonical pathways for 
GSEA. To avoid the overly narrow and broad definition 
of a biological pathway, we confined the input pathway 
to contain 10-100 genes per pathway, resulting in 781 
pathways in our GSEA analysis (Supplementary Figure. 
1). Among these, 151 pathways were selected from KEGG 
(http://www.genome.jp/kegg/), 214 were from Biocarta 
(http://www.biocarta.com/), 377 were from Reactome 
(http://www.reactome.org/), and 39 were from other 
resources. Biocarta generally has the smallest pathway 
size in terms of the number of gene in each pathway, with 
a median gene number of 18 per pathway. In contrast, 
KEGG pathway has the largest size with a median gene 

number of 44 per pathway. The significant pathways 
selected by GSEA were input into the Ingenuity Pathway 
Analysis tools (http://www.ingenuity.com/index.html) for 
functional annotation. 

SNP-gene map

Gene information was downloaded from NCBI 
dbSNP build 36.3. SNP information was from the Illumina 
HumanHap610 chip and validated by USCS genome 
browser (http://genome.ucsc.edu/). SNPs were mapped to 
gene region and ±20KB upstream and downstream of gene 
boundaries to cover the gene coding region and most of 
the regulatory components.

Statistical analysis

Data preparation

To assess the association between each SNP 
and disease status, we built a 2x2 contingency table by 
counting the number of times each possible allele appears 
in a case or control and allelic 1 degree of freedom (d.f.) 
test implemented in PLINK was performed similar to the 
primary GWAS analysis [14]. We conducted quantile-
quantile plot analysis to assess the distribution of chi2 test 
statistics of all GWAS SNPs using the R installed package 
snpMatrix (http://www.bioconductor.org/packages/2.3/
bioc/html/snpMatrix.html) and hexbin (http://cran.r-
project.org/web/packages/hexbin/index.html). Deviation 
of observed data from expected results might indicate the 
possibility of population stratification, inadequacy of case-
control matching, or differential genotyping in cases and 
controls. We randomly permuted the case-control status 
1000 times in order to test the presence of differential 
genotyping. In each permutated data the same number of 
cases and controls was generated and an allelic 1 d.f. test 
statistic and P value was re-calculated for each SNP using 
the permuted case-control status. We applied three GSEA 
methods for comparison to determine which pathway(s) 
associated with bladder cancer were likely true findings, 
not derived by chance. For all methods, pathways with P 
values < 0.05 were considered significant.

Pathway analysis

GenGen [28]

The statistic value of each gene was represented by 
the highest statistic value among all SNPs mapped to the 
gene and then sorted from largest to smallest (r(1),…, r(N)) 
for all N genes in the GWAS dataset. For any given gene 
set S, composed of NH genes, a weighted Kolmogorov-
Smirnov-like running-sum statistic was calculated that 
reflects the overrepresentation of genes within the set S 

http://www.broadinstitute.org/gsea/msigdb/
http://www.broadinstitute.org/gsea/msigdb/
http://www.genome.jp/kegg/
http://www.biocarta.com/
http://www.reactome.org/
http://www.ingenuity.com/index.html
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at the top of entire ranked list of genes in the genome: 

, 
where NR = ∑Gj*∈s|r(j*)|

p, p was the weight to genes with 
extreme statistic values. The enrichment score, ES(S), 
indicated the maximum deviation of the sum of the 
statistic values in gene set S from a set of randomly picked 
genes in the genome. Normalized enrichment score, 

 was used which enabled 
the comparisons among different gene sets [27].
Aligator [30]

Aligator utilizes a predefined threshold P-value of 
0.01 wherein significant SNPs were defined on the basis 
of less than the predefined threshold. If a gene had one or 
more than one significant SNP, the gene was considered 
significant. Assume the total number of significant gene 
was K in the overall data. The number of significant genes 
was counted for each gene set. To determine the statistical 
significance of the gene set, 5000 replicate gene lists were 
generated by randomly selecting SNPs from all available 
SNPs and adding the genes that encompass the SNP to 
the gene list until the size of the gene list reached K. The 
P-value for each gene set was evaluated by comparing 
the number of significant genes from the observed data 
to the number of significant genes from the 5000 replicate 
gene lists. To correct for multiple testing, the program 
randomly selected one replicate gene list as the observed 
data and sample 5000 gene lists with replacement from the 
5000 replicate gene lists. P-values for each gene set were 
calculated as before, using permutation. This procedure 
was repeated 1000 times to determine whether there was a 
significant excess of significant gene sets.
SNP ratio test [29]

For a given pathway W, the SNP ratio rw = the 
number of significant SNP in W / the number of SNPs 
in W. The empirical P value for a particular pathway, P = 
(s+1)/(N+1), where s is the number of simulated datasets 
that produce a ratio greater than or equal to the original 
ratio, and N is the total number of simulated datasets. 

Gene and SNP analysis

We selected SNPs identified in the pathway 
analyses above for validation in a second dataset from 
the already published NCI GWAS [15]. The P values of 
the distribution of genotypes of these SNPs between case 
and controls were assessed by allelic 1 degree of freedom 
(d.f.) test in both Texas and NCI populations. For SNPs 
to be considered “validated”, the differential distribution 
of the genotypes in cases vs. controls in the validation 
group is consistent with the discovery population (same 
direction of change), and also both their associations 
with bladder cancer risk are significant at P < 0.05. A 

meta-analysis of the Texas and NCI populations was 
also used to further support the findings. Imputation of 
the SNPs at gene region of interest for Texas bladder 
cancer GWAS data was conducted by Impute 2 software 
(The University of Oxford http://mathgen.stats.ox.ac.uk/
impute/impute_v2.html) using 1000 genomes data (http://
www.1000genomes.org/) as reference panel.
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