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ABSTRACT
The CEA family comprises 18 genes and 11 pseudogenes located at chromosome 

19q13.2 and is divided into two main groups: cell surface anchored CEA-related cell 
adhesion molecules (CEACAMs) and the secreted pregnancy-specific glycoproteins 
(PSGs). CEACAMs are highly glycosylated cell surface anchored, intracellular, and 
intercellular signaling molecules with diverse functions, from cell differentiation 
and transformation to modulating immune responses associated with infection, 
inflammation, and cancer. In this review, we explore current knowledge surrounding 
CEACAM1, CEACAM5, and CEACAM6, highlight their pathological significance in the 
areas of cancer biology, immunology, and inflammatory disease, and describe the 
utility of murine models in exploring questions related to these proteins.

INTRODUCTION

Carcinoembryonic antigen (CEA), one of few FDA-
approved biomarkers for cancer, was first identified and 
described in 1965 as a tumor-specific antigen expressed 
in embryonic gut, liver, and pancreas tissues, as well as 
gastrointestinal and respiratory malignancies, but not in 
differentiated adult tissues [1]. Like other developmental 
pathways and members, such as WNT, NOTCH, and 
Hedgehog, involved in many aspects of embryogenesis, 
CEA is repressed in the normal human digestive and 
respiratory systems but reappears during malignant 
transformation [1, 2]. Discovery of similar CEA-like 
proteins led to a nomenclature meeting reorganizing 
the family of proteins as carcinoembryonic antigen-
related cellular adhesion molecules, or CEACAMs [3]. 
Notably, CEACAM1, CEACAM5, and CEACAM6 

have been found to be implicated in immune related 
disease and cancer [4–8], and are now considered valid 
clinical biomarkers and promising therapeutic targets 
in melanoma, lung, colorectal, and pancreatic cancers. 
CEACAM1 is a biomarker in melanoma [9, 10], non-
small cell lung cancer [11] and pancreatic adenocarcinoma 
(PDAC), and its increased expression is associated with 
severe disease. CEACAM5 has a significant clinical 
role as a tumor marker for several tumors including 
gastrointestinal and respiratory malignancies [6, 12, 
13]. However, due to low sensitivity and specificity, its 
predictive value alone is still unclear. CEACAM6 is highly 
expressed in hyperplastic polyps and colon adenomas [14], 
breast cancer, pancreatic cancer, mucinous ovarian cancer, 
gastric cancer, and lung adenocarcinoma [15].

All CEACAMs contain an N-terminal V set fold 
from the immunoglobulin (Ig) superfamily, up to three 
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type 2 immunoglobulins, a transmembrane domain, and 
a cytoplasmic domain, which facilitate adhesion through 
homophilic (CEACAM1, CEACAM5, and CEACAM6) 
and/or heterophilic (CEACAM1–CEACAM5, 
CEACAM5–CEACAM6, and CEACAM6–CEACAM8) 
interactions (Figure 1) [4]. Each CEACAM has a specific 
expression pattern [14, 16, 17]. Depending on the cell 
type, CEACAM1, CEACAM5, and CEACAM6 play 
pivotal roles in particular aspects of cancer biology and 
immunology [14, 18, 19]. 

Modeling the function of CEACAMs on tumor 
growth, the tumor microenvironment, the immune system, 
and inflammatory disease has been particularly challenging, 
with mouse models for only a tiny number, reflecting 
limited expression in rodents: CEACAM1 (knockout), and 
collectively CEABAC transgenic pooling CEACAM3, 
CEACAM5, and CEACAM6 [20]. Despite this, transgenic 
mouse and knockout models provide substantial insight into 
the role of CEACAMs in disease [20–22].

FUNCTION AND EXPRESSION 
PATTERNS OF CEACAMS 1, 5, AND 6

CEACAM1 expression is the broadest, found in 
the cytoplasm of granulocytes and myeloid cells, and 
in the endothelium of the thyroid gland, adrenal gland, 
endometrium, prostate, and placenta [17]. Moreover, 
CEACAM1 is expressed on the cell membrane of 
esophageal glands, uterine glands, pancreatic ducts, 
prostate and cervix epithelia, liver bile ducts, enterocytes, 
hepatocytes, and goblet cells, with particularly strong 

expression in colonic absorptive cells and renal epithelia 
[17]. CEACAM5 is expressed similarly in the colon 
and pancreas but is expressed on the cell surface of 
gastric and intestinal mucous cells, with particularly 
strong staining in esophageal squamous epithelia [17]. 
CEACAM6 is abundantly expressed in the colon, liver, 
stomach, gallbladder, skin, and tongue [17]. In addition, 
it is expressed in the squamous epithelia of the tongue, 
esophagus and cervix. CEACAM6 is also prominent in 
the mucous epithelia of the submandibular salivary and 
the anterior lingual gland, as well as myeloid cells in the 
prostate gland and bone marrow [14].

CEACAM1 comprises several isoforms through 
alternative splicing, yet the functions of each of these 
isoforms remain to be fully elucidated. CEACAM1 
isoforms differ in the amount of extracellular 
immunoglobulin-like domains and the length of the 
cytoplasmic tail. The short tail isoform (CEACAM1-S) 
does not have any immunoreceptor tyrosine-based 
inhibitory motifs (ITIMs), but contains sequences 
that can bind to calmodulin [23], tropomyosin, and 
F-actin [24]. The interaction between calmodulin and 
CEACAM1 results in the interference of CEACAM1 
cis-homodimerization, suggesting that calmodulin 
regulates the activity of CEACAM1 [23]. In addition, 
co-sedimentation assays reveal that a glutathione 
S-transferase fusion protein containing the S-isoform 
fusion protein (GST-Cyto-S) binds to F-actin and 
tropomyosin, especially when incubated with G-actin 
during polymerization [24]. The long tail variant 
(CEACAM1-L) has two ITIMs that negatively regulate 

Figure 1: CEACAM interactions. (A) CEACAM trans-homophilic binding (CEACAM1-L – CEACAM1-L). (B) CEACAM cis-
homodimer (CEACAM1-L – CEACAM1-L). (C) CEACAM trans-heterophilic binding (CEACAM5 – CEACAM1). (D) CEACAM 
heterophilic binding (CEACAM5 – CEACAM1).
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signaling from various activating receptors, including 
the T cell antigen receptor (TCR) [25]. Notably, the ratio 
of CEACAM1-L to CEACAM1-S varies by cell type, 
activation state, and growth phase [4, 26, 27].

CEACAM1 has several binding targets: 
intracellularly, it forms cis-dimers, which are essential 
in cytoplasmic signaling. In B cells, the dimeric state of 
CEACAM1 regulates recruitment of signaling molecules, 
such as the Src-family kinases and the Src homology 2 
(SH2)-domain-containing protein tyrosine phosphatases 
(SHP1 & 2), by the cytoplasmic tail to the B cell receptor 
[28]. Upon phosphorylation, ITIMs on the CEACAM1-L 
isoform cytoplasmic tail bind to SHP1 and SHP2 and 
attach to B cell receptors (BCR), inhibiting BCR-
induced Ca2+ mobilization [28]. CEACAM1 initially 
undergoes trans-homophilic (CEACAM1 - CEACAM1), 
or trans-heterophilic (CEACAM - CEA Family 
Member) dimerization, and can bind to other proteins 
and microbes [4, 29]. For example, trans-homophilic 
dimerization of CEACAM1 can protect monocytes from 
apoptosis through the activation of the Bcl2 protein via 
the phosphatidylinositol 3-kinase (PI3K)/Akt pathway 
[30]. CEACAM1 is involved in a variety of processes, 
including angiogenesis [31, 32], metabolic regulation [33], 
and immune modulation [27, 34–41]. In angiogenesis, 
CEACAM1 stimulates the proliferation, chemotaxis, and 
capillary-like tube formation of human microvascular 
endothelial cells [31], prompting further exploration into 
the angiogenic properties of CEACAM1 as treatment 
towards vascular diseases, such as atherosclerosis. 
Furthermore, CEACAM1 is expressed in the capillaries 
of numerous solid human tumors such as bladder and 
prostate cancer, leydig cell tumors, seminomas, and brain 
hemangioblastoma [31]. 

In immune modulation, CEACAM1 is strongly 
upregulated in T cells following activation by cytokines. 

After mitogen stimulation, CEACAM1 is rapidly 
mobilized in T cells from an intracellular compartment 
to the cell surface [42]. Based on its kinetics in T cells 
and inhibitory role in B cells, CEACAM1 likely plays an 
inhibitory role in T cell immune function. In metabolic 
regulation, deletion or inactivation of CEACAM1 
impairs insulin clearance in mice, compromising 
metabolic homeostasis and promoting obesity, hepatic 
steatosis, and fibrosis [33]. Its signaling is complex and 
depends on the type and stage of tissues involved, with 
growth-suppressive roles in certain types of tissue but 
proliferative and stimulative roles in other tissue types 
[18]. For example, reinsertion of CEACAM1 isoforms 
in colorectal and prostate CEACAM1-negative tumor 
cells inhibits xenograft tumor development in syngeneic 
mice, suggesting that CEACAM1-L behaves as a tumor 
suppressor protein; on the contrary, CEACAM1-L 
overexpression in tumors correlates with metastatic spread 
in other types of aggressive cancers, such as hepatocellular 
cancer [43], melanoma, non-small cell lung, gastric, 
thyroid, and bladder cancers [19].

CEACAM5 (also known as CEA) comprises 
one N-terminal variable domain and six C2-like Ig 
domains [44]; its glycosylphosphatidylinositol (GPI) 
linker provides membrane anchoring (Figure 2) [19, 
45]. CEACAM5 normally functions as an adhesion 
molecule [46], but it also has roles in regulating 
differentiation [47], immune modulation [48, 49], and 
inhibiting anoikis [50]. In the rat L6 myoblast cell line 
(a well-characterized differentiating system), stable 
CEA overexpression leads to fusion into myotubes, 
forming multinucleated myotubes. Moreover, the entire 
molecular program of differentiation, including creatine 
phosphokinase upregulation, myogenin upregulation, 
and β-actin downregulation, is completely abrogated by 
the ectopic expression of CEACAM5, suggesting that the 

Figure 2: Structure of CEACAM1-L, CEACAM1-S, CEACAM5, and CEACAM6. CEACAM1-L isoform, CEACAM1-S 
isoform, CEACAM5, and CEACAM6. CEACAM1 is a transmembrane protein while CEACAM5 and CEACAM6 are GPI linked to 
the external surface. Yellow represents N-terminal variable domains; green represents C2-like Ig domains; blue represents GPI linkers 
(CEACAM5/CEACAM6) or transmembrane and cytosolic portions of the CEACAM (CEACAM1); red circles represent ITIM motifs; 
spikes on the extracellular domain represent glycosylation sites of CEACAMs.
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expression of CEACAM5 inhibits terminal differentiation 
[47]. Furthermore, L6 rat myoblast cells transfected with 
CEACAM5 and CEACAM6 undergo significantly less 
anoikis than L6 myoblasts expressing CEACAM1 [50]. 
CEACAM5 is an FDA-approved diagnostic tumor marker 
for colon cancer, with potential as a prognostic marker 
[51].

CEACAM6 has an N-terminal variable domain 
followed by two C2-like Ig domains and is also linked 
to the membrane by a GPI linker (Figure 2) [45]. Like 
CEACAM5, CEACAM6 was shown to be a regulator 
of anoikis through a mechanism involving Src and focal 
adhesion kinase (FAK) [52]. CEACAM6 activates the 
Src-FAK signaling system in a dose-dependent manner, 
which leads to phosphorylation of MAPK/extracellular 
signal-regulated kinase 1/2 (MEK1/2) and extracellular 
signal-regulated kinase (ERK). However, there was no 
observed effect on Src-FAK signaling in cells treated 
in the same manner with CEACAM5, suggesting that 
CEACAM6, not CEACAM5, forms trans-dimers and 
activates the Src-FAK pathway. Anoikis is significantly 
reduced in lung cancer cells with increased expression of 
CEACAM6, indicating that CEACAM6 plays an essential 
role in inhibiting anoikis through the activation of the Src-
FAK signaling system [52]. 

INFLAMMATORY BOWEL DISEASE 

The CEACAM family of genes plays a significant 
role in immune modulation. A key area of study is the 
role of CEACAMs in binding to pathogens and their 
importance in inflammation. CEACAM1 is a member of 
the CEACAM family that is expressed in immune cells 
and can directly regulate immune cell activity [4, 53]. It 
is the only family member expressed on activated T cells 
[18], and it is involved in inflammatory bowel disease 
(IBD). Decreased expression levels of CEACAM1 are 
observed in pediatric Crohn’s disease (CD); however, 
this decrease is not found in ulcerative colitis (UC) or 
adult patients [7, 54]. Inhibition of CEACAM1 leads to 
a hyperinflammatory state that induces progression and 
worsens the presentation of colitis in murine models, 
nullifying the normal critical immunosuppressive effect of 
CEACAM1 [36, 39, 41, 55]. CEACAM1 expression also 
decreases intestinal permeability and increases epithelial 
barrier function in a murine model of colitis induced 
by dextran sulfate sodium (DSS), decreasing severity 
and symptomatology of the disease [56]. The increased 
expression of CEACAM1 in this model leads to decreased 
levels of proinflammatory cytokines such as TNFα and 
IL-6 and increased expression of tight junction proteins 
such as claudin1 and occludin [56]. The data suggest a 
protective role of CEACAM1 in models of colitis by 
modulating tissue and the immune environment. 

CEACAM5 expression is increased in adult 
UC, decreased in pediatric patients, but not altered in 

adult CD [7]. CEACAM5 is involved in the activation 
of CD8+ suppressor T cells [57]. Normally, intestinal 
epithelial cells can promote CD8+ suppressor T cell 
activation by presenting soluble antigens to T cells, 
limiting inflammation. In patients with IBD, intestinal 
epithelial cells are unable to activate CD8+ suppressor 
T cells, leading to a proinflammatory state mediated by 
dysregulated cytokine release by CD4+ Th cells [58]. 
CEACAM6 expression is increased in pediatric CD and 
adult UC and CD. Compared to the role of its family 
members in IBD, CEACAM6 is more known for its 
function as a receptor for adherent invasive E. coli (AIEC) 
that contribute to the inflammation observed in IBD [59]. 
CEACAM6 expression is increased in a proinflammatory 
environment, and binding to AIEC LF82 would allow for 
continued inflammation and an increase in the availability 
of receptors that permit AIEC LF82 colonization, 
invasion, and the potential to alter the microbiome as this 
bacteria outcompetes other species [59, 60]. However, it 
is to be noted that other strains of AIEC do not induce the 
CEACAM6 expression [7, 59].

INTERACTIONS WITH PATHOGENS

CEACAM1 is expressed on T cells following 
activation, and binding to extracellular ligands or 
pathogens can lead to T cell downregulation [42]. Several 
pathogens bind to CEACAMs, including several species 
of Neisseria [61, 62], Haemophilus influenzae [62, 63], 
Helicobacter pylori [64], Moraxella catarrhalis [65], 
Fusobacterium nucleatum [66], Escherichia coli [59, 62, 
67, 68], and species of Salmonella [68]. A mechanism 
of immune suppression by Neisseria involves binding 
their opacity-associated proteins (Opa) to CEACAM1 on 
immune cells and inhibiting their function without being 
phagocytosed [38]. 

Potentially, other pathogens binding to CEACAMs 
exhibit similar effects [38]. Helicobactor pylori express 
HopQ (a surface exposed adhesin), which allows it to bind 
to CEACAMs, including CEACAM1, 3, 5 and 6 [69]. 
This binding allows an avenue of insertion for the CagA 
virulence factor into cells which then increases the ability 
of this bacteria to colonize gastric tissue and exacerbate 
pathologies associated with Helicobactor pylori (Figure 3) 
[64, 69]. H. pylori exploit human CEACAMs, using them 
to gain access to the cell and inject CagA into gastric 
epithelial cells via bacterial type IV secretion system 
(T4SS) [70]. After injection, CagA promotes neoplastic 
transformation by interfering with intracellular signaling. 
CagA phosphorylation and translocation into host cells is 
observed in CEACAM-humanized murine neutrophils, 
but not WT mouse neutrophils, suggesting a CEACAM 
driven role in CagA activation, phosphorylation, and 
neoplastic transformation [71]. H. pylori was shown 
not to interact with non-human CEACAMs, including 
mice, and strains of H. pylori that could colonize the 
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gastric mucosa of mice lack a functional T4SS and do 
not enumerate the pathology observed in humans [72, 
73]. CEACAM-humanized neutrophils and macrophages 
infected by CagA-positive strain of H. pylori significantly 
enhance MIP-1α production, leading to a large influx of 
active inflammatory cells in the lamina propria of gastric 
mucosa [71]. Infection with H. pylori is a risk factor for 
developing gastric ulcers and gastric cancer (Figure 3) 
[74]. The H. pylori cytotoxin-associated gene (CagA) 
is the most potent risk factor for gastric cancer [70, 74]. 
Blocking H. pylori from binding CEACAM1 may prevent 
CagA from disrupting cell signaling and inhibiting gastric 
ulcers and gastric cancer. 

Streptococcus agalactiae, also known as group B 
Streptococcus (GBS) expresses β-IgI3, a newly discovered 
immunoglobulin fold that binds to CEACAM1 through 
its small α-helix and loop. In contrast, HopQ uses an 
intrinsically disordered loop that folds into a β hairpin 
and a small helix upon binding to CEACAM1 [75]. 
Although they bind to CEACAM1 in a structurally 
different manner, β-Ig13 and HopQ target the same set of 
CEACAM1 residues [75]. Blocking those shared residues 
might prove critical in preventing bacterial accumulation. 
Novel β-IgI3, or similar sequences, was identified in 296 
proteins expressed by human gram-positive bacteria and 
pathogens, including S. oralis, S. pyogenes (also known 
as group A Streptococcus), S. dysgalactiae and S. mitis, 
S. intermedius, S. pneumoniae, S. pseudopneumoniae 

and Gemella haemolysans [75]. Exploring the role of the 
bacterial protein β-IgI3 in adhesion to host epithelium 
through binding to CEACAM1 may provide further 
insight into the role of CEACAMs as a docking target for 
both commensal and pathogenic bacteria.

Following enterotoxigenic Escherichia coli releasing 
heat-labile toxin in the colon, increased cyclic AMP levels 
are released, ultimately leading to increased CEACAM6 
expression, which in turn binds to the pathogen [67]. 
Therefore, increased CEACAM6 may be causal in the 
subsequent enteropathy associated with infection of 
this pathogen [67]. Although immune suppression and 
adhesion are beneficial in some contexts, these pathogens 
have found ways to exploit these proteins to create a 
suitable environment for infection and immune evasion. 
Thus, disrupting the interactions between pathogens and 
CEACAMs is an essential avenue of interest and one that 
is currently being investigated [64, 74]. 

CANCER

CEACAM1, CEACAM5, and CEACAM6 all 
have variable roles in tumor initiation, progression, and 
metastasis. The dual roles of CEACAM1 can be best 
understood through the separate functions of the extended 
versus short tail. ITIMs on CEACAM1-L bind to other 
extracellular ligands, including other CEACAM family 
members and CEACAM1, suppressing immune cells and 

Figure 3: CEACAM-HopQ interaction. HopQ, the surface exposed adhesin of H. pylori, binds to CEACAM1, allowing for the 
secretion of virulent factor,CagA. This secretion enhances the release of inflammatory mediators, such as interleukin 8, ultimately resulting 
in gastric ulcers and gastric cancer.
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allowing immune evasion by cancer cells [40, 75–78]. 
The cytoplasmic tail of CEACAM1 has several residues 
that serve as binding sites or phosphorylation sites for a 
variety of proteins that include: the Src family of kinases, 
insulin receptor, epidermal growth factor receptor upon 
EGF treatment, SHP1, SHP2, phorbol ester inducible 
staurosporine-inhibitable Ser/Thr kinases, and protein 
kinase C [19]. After binding to insulin, the CEACAM1 
long cytoplasmic tail downregulates insulin receptor (IR) 
mitogenic signaling: IR phosphorylation of Tyr493 at 
the CEACAM1 cytoplasmic tail and recruitment of the 
adaptor protein Shc leads to Grb2/SOS sequestration, 
effectively reducing IR signaling (Figure 4) [79]. 
Similarly, CEACAM1 reduces epidermal growth factor 
receptor (EGFR) dependent cell proliferation by binding 
and sequestering Shc (Figure 4) [80]. The data suggest 
that CEACAM1 functions as a tumor suppressor in the 
early stages of tumorigenesis, as knockout or loss of 
CEACAM1 is associated with increased tumorigenic 
potential [81–84]. 

Immune cell suppression occurs after Src family 
kinase protein, lymphocyte-specific protein tyrosine 
kinase (LCK), phosphorylates the ITIMs of dimeric long 
tail CEACAM1, leading to recruitment of SHP2, which 
dephosphorylates the T cell receptor/CD3 complex and 
ZAP70, abrogating downstream signaling and activation of 
the T cell (Figure 4) [85]. CEACAM1 also downregulates 

natural killer cells and is involved in developing and 
differentiating a variety of myeloid-derived immune cells 
[5]. Knockout of CEACAM1 leads to the development 
of exhaustion-resistant and hyperinflammatory T cells, a 
phenotype mediated by CEACAM1-TIM-3 interactions 
[36]. CEACAM1 is a regulator of TIM-3, binding to TIM-
3 through its N-terminal domain, forming a heterodimer, 
and facilitating the maturation and cell surface 
expression of TIM-3, which inhibits T cell activation and 
prevents the development of exhaustion-resistant and 
hyperinflammatory T cells [36]. CEACAM1 also plays 
a regulatory role in NK-cell-mediated cytolysis, evading 
NK cells by promoting intracellular retention of several 
NKG2D ligands [35]. Melanocytes normally do not 
express CEACAM1, but it was found that in melanoma 
cells increased expression of CEACAM1 and decreased 
NKG2D ligands, lead to decreased susceptibility to NK 
cell-mediated cytolysis [35].

Under apoptotic conditions in CT51 mouse colon 
carcinoma cells, CEACAM1-L is cleaved at the 457DQRD460 
motif by caspase-3 within its long cytoplasmic domain, 
resulting in degradation of its 8 kDa cytoplasmic domain 
and formation of a truncated version of CEACAM1-L, 
the CEACAM1-LΔ461 mutant [86]. NIH 3T3 cells stably 
expressing mutant CEACAM1-LΔ461 show increased 
cell adhesion properties [86]. Cleavage of CEACAM1-L 
in apoptotic cells was blocked when a specific caspase-3 

Figure 4: Signaling of dimeric CEACAM1 long tail isoform in epithelial cells and T cells. In epithelial cells, CEACAM1 
is phosphorylated at the ITIM residues, namely Tyr493, leading to recruitment of Shc, sequestering Grb2 and SOS, reducing signaling 
downstream of a receptor tyrosine kinase such as insulin receptor or epidermal growth factor receptor. In T cells, dimeric CEACAM1 is 
phosphorylated at the ITIM residues leading to the recruitment of SHP2, whose phosphatase action reduces signaling downstream of the 
TCR/CD3 complex.
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inhibitor was introduced, indicating CEACAM1-L is 
cleaved by caspase-3, but not caspase-7 or caspase-8 [86]. It 
remains unclear if CEACAM1-LΔ461 is tumor-promoting 
or tumor-suppressive. Crosslinking of CEACAM1 on the 
cell surface of tumor cells using monoclonal antibodies 
specific for CEACAM1 leads to apoptosis [84]. In a healthy 
colonic crypt mucosa, epithelial cells migrate towards 
the intestinal crypt lumen until they undergo apoptosis 
and shed into the gut lumen [84, 87]. Most colon tumors 
exhibit a marked reduction of apoptosis and decreased 
CEACAM1 [84]. In two cell lines of HT29 cells (colorectal 
adenocarcinoma cells), induction of CEA did not affect 
the low CEACAM1 cell line. However, it caused dose-
dependent induction of apoptosis in the high CEACAM1 
cell line [43], demonstrating that CEACAM5 is a mediator 
of CEACAM1-induced apoptosis. CEACAM1 expression 
is reduced in more than 85% of early colorectal adenomas 
and carcinomas [83]; a significant reduction is apparent in 
colonic aberrant crypt foci and hyperplastic polyps [83, 
88]. Isolated Jurkat cells and HT29 cells displayed drastic 
improvement in apoptotic ability when CEACAM1 levels 
were high, indicating that loss of apoptosis is associated 
with decreased CEACAM1 expression in colorectal 
epithelial cells and lymphocytes [89].

Preserving the interactions between CEACAM1 
and CEACAM5 might be critical in preventing colorectal 
adenocarcinomas. Interestingly, loss of CEACAM1 
is associated with abnormal T cell function [41]. 
CEACAM1−/−  mice exhibit significantly altered CD8+ T 
cell activity in the gut mucosal tissue, with CD8+ T cells 
in CEACAM1−/−  mice expressing abundant CD29, yet 
less CD62L, enhancing secretion of proinflammatory 
cytokines IL-6, IL-17 and TNFα [41]. In addition, PD-1 
and CTLA-4 are strongly upregulated on CD8+ T cells 
from CEACAM1−/−  mice infected with Citrobacter 
rodentium, but neither molecule is upregulated on CD8+ 
T cells from infected WT mice [41]. Differences in 
phenotype are even stronger under colitis and are likely 
responsible for the higher bacterial burden and defective 
intestinal barrier in CEACAM1−/− mice exposed to C. 
rodentium induced colitis. Restoring CEACAM1 in T 
cells may prove critical in preventing inflammation and 
restoring apoptosis, as most colorectal tumors express 
decreased levels of CEACAM1 [83, 84].

Although its tumor suppressive properties are 
evident, the role of CEACAM1 in cancer is bimodal, 
with many similarities to the TGF-β signaling pathway; 
early effects being tumor suppressive, and more invasive 
cancers relying on it for malignant potential. For example, 
CEACAM1−/−  mice injected with highly metastatic MC38 
colorectal cancer cells and B16F10 melanoma cells 
experience a reduction in the number and size of metastatic 
lesions compared to the WT littermate, with tumor cell 
proliferation decreasing by 2-fold and tumor cell survival 
decreasing by 3-fold, indicating that expression of 
CEACAM1 is associated with tumorigenesis in colorectal 

cancer [90]. CEACAM1 interacts with TNFα, playing a 
pathogenic role in cirrhosis-related hyperpermeability. 
CEACAM1 upregulates tumor necrosis factor-α (TNFα) 
in a positive-feedback loop [91]. The effect is increased 
apoptosis, disruption of tight junction protein-maintained 
barrier function, and decreased restitution capacity in 
causing colon adenocarcinomas with hyperpermeability 
and cirrhosis [86, 92]. Interrupting interactions between 
CEACAM1 and TNFα might prove effective in preventing 
cirrhosis-related hyperpermeability. 

In hepatocellular carcinoma (HCC), CEACAM1 
cytoplasmic expression is associated with poor 
differentiation, high recurrence rates, larger and greater 
number of tumors, vascular invasion, and satellite nodules 
in comparison with CEACAM1 membranous expression 
in HCC [32]. In the liver, loss of CEACAM1 in a murine 
model has been found to lead to inflammation and Non-
Alcoholic Steatohepatitis (NASH), with reduced insulin 
clearance and altered metabolism [93]. Inflammation 
and NASH are risk factors for developing HCC in the 
CEACAM1 KO mice [93]. CEACAM1 has also been 
shown to be a binding partner to β2-spectrin, which is 
involved as a cofactor for SMAD3 in the TGF-β signaling 
pathway [43, 94, 95]. The expression of a long tail 
isoform of CEACAM1 leads to the nuclear localization 
of SMAD3 in HCC cell lines and leads to an increased 
invasive phenotype [43]. Rat HCC tumor cells transfected 
with CEACAM1a-4L displayed a significant decrease in 
tumor formation, progression, and burden compared to 
rat HCC cells transfected with CEACAM1b-4S and the 
negative control group, suggesting that CEACAM1 splice-
switching therapy may inhibit HCC [96].

Exploring different isoforms of CEACAM1 
(CEACAM1-L, CEACAM1-S, cytoplasmic CEACAM1, 
and membranous CEACAM1) is critical to better 
understanding the variable role of CEACAM1 in colorectal 
cancer, gastric cancer, and HCC, and can potentially 
explain the contrasting results in studies exploring 
CEACAM1 pathology in the gastrointestinal tract. A 
clinical study found that CEACAM1 was expressed in 
the sera of 24% (15/61) of normal patients, 66% (35/53) 
of patients with chronic pancreatitis, and 91% (74/81) of 
pancreatic cancer patients, indicating that CEACAM1 may 
be a viable biomarker for pancreatic cancer [97, 98]. In 
another study, CEACAM1 was shown to be upregulated in 
69% of pancreatic carcinomas compared to 2% in normal 
patients, and patients with low serum CEACAM1 levels 
have significantly increased rates of overall survival [99]. 
Overall, CEACAM1 is downregulated in colorectal cancer, 
upregulated in gastric cancer, and directly correlated with 
decreased overall survival in HCC and gastric cancer [32, 
82–84, 97, 98]. 

CEACAM5 is expressed in multiple epithelial 
malignancies, including gastric cancer, colorectal cancer, 
and pancreatic cancer, as well as in NSC lung cancer 
and melanoma [12, 100, 101]. In coordination with 
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CEACAM1s ability to downregulate immune cells, 
CEACAM5 is a binding partner to CEACAM1 that 
can elicit this signaling, allowing for immune evasion 
by cancer cells [102]. Therapies targeting CEACAM5 
in cancer are being developed to block this evading 
immune function [103, 104]. CEACAM5 has also been 
shown to be important in metastasis in colorectal cancer. 
In colorectal cancer, it was found to prevent anoikis by 
binding to DR5, leading to decreased activation of caspase 
8 [105]. CEACAM5 also modulates the environment in 
the liver to create a space on the sinusoidal endothelial 
cells suitable for the adhesion and survival of metastatic 
cells by upregulating cytokine release and increasing 
protection against reactive oxygen species [106].

The TGF-β pathway plays an integral role in the 
suppression of early colorectal cancers, yet in advanced 
colorectal cancers, it plays a prominent tumor promoting 
role—in some ways similar to CEACAM1 function [107]. 
CEACAM5 binds to TGF-β type I receptor (TBR1) with 
decreased expression of SMAD3 targets, indicating that 
CEACAM5 can directly inhibit the tumor suppressive 
properties of TGF-β [108]. The same model showed 
that targeting CEA or its expression rescued TGF-β 
signaling. Interestingly, the expression of CEACAM5 and 
6 is upregulated by SMAD3-mediated TGF-β signaling, 
suggesting a link between the metastatic properties 
of TGF-β in cancer and CEACAMs [109]. Decreased 
expression of the TGF-β pathway has also been inversely 
correlated with the expression of CEACAMs. Reduction in 
expression of TGF-β pathway members (TBR2, SMAD4, 
SPTBN1) has been shown to alter the colonic microbiome 
shifting towards a prevalence of bacteria associated with 
colorectal cancer [110]. The expression of CEACAM5 
and CEACAM6 in colon cancer cell lines is increased in 
the presence of proinflammatory cytokine interleukin 6, 
supporting an important role in inflammation in colorectal 
cancer [111].

Similar to CEACAM5, CEACAM6 expression is 
significantly increased in malignancies [14, 15, 112]. In 
addition, CEACAM6 is a useful prognostic tool for cancer 
[15, 113, 114]. In a cohort of 115 lung adenocarcinoma 
patients, expression of CEACAM6 was associated with a 
five-year disease-free survival rate of 49.1%, as opposed 
to 74.2% for CEACAM6-negative patients [8]. In a study 
of gastric cancer patients, it was noted that an increased 
level of CEACAM6 DNA in the peripheral blood was 
significantly associated with a higher stage of the disease 
as well as lymph node metastasis [115]. Analysis of 
tumor specimens of gastric carcinoma patients using 
immunohistochemistry revealed increased CEACAM6 
protein levels were associated with a higher stage, and 
that high CEACAM6 protein levels were associated with 
a shorter recurrence free survival [113]. Similarly, in colon 
cancer patients, higher levels of CEACAM6 expression 
was associated with higher tumor stage, and a shorter 
recurrence free survival [114]. 

CEACAM6 is important for the metastatic 
potential of cancers [114, 116, 117]. CEACAM6 
was found to inhibit anoikis in the pancreatic ductal 
adenocarcinoma (PDA) line MiaPaca2, and inhibition 
of CEACAM6 with short interfering RNA (siRNA) 
led to decreased metastasis in a nude mouse orthotopic 
xenograft model [118]. The PI3K-AKT signaling 
pathway is involved in cell survival and silencing of 
CEACAM6 in the MiaPaca2 cell line led to decreased 
AKT phosphorylation [118]. Cross linking of CEACAM6 
in BxPC3 cells using antibodies leads to resistance to 
anoikis by activating Src in a caveolin-1 dependent 
manner, leading to activation of focal adhesion kinase 
which then signals downstream to activate several 
cell proliferation and survival pathways [119]. In 
pancreatic cancer cell lines PANC-1 and CFPAC-1, 
CEACAM6 is involved in the expression of epithelial 
to mesenchymal transition-associated genes ZEB1 and 
ZEB2, thereby increasing the metastatic potential of 
cells [116]. Downregulation of CEACAM6 increased 
E-Cadherin levels in colon cancer cell lines, suggesting 
that CEACAM6 is a factor directly responsible for these 
cells’ invasive properties [114].

MOUSE MODELS OF CEACAMS

The CEACAM1a null mice were initially used to 
provide insight into the role of CEACAM1 in insulin 
clearance [22, 96] and its role as a tumor suppressor 
in colon cancer [81], and more recently, in chronic 
viral infections [37] and immune regulation [36]. In 
CEACAM1 null mice, the absence of CEACAM1 led to 
an inability to clear insulin, leading to hyperinsulinemia 
followed by insulin resistance, obesity, and non-alcoholic 
steatohepatitis [120]. CEACAM1−/−  mice, WT mice, 
and CEACAM1-4S transgenic mouse overexpressing 
the mouse 4S isoform (4S Tg mice) have diverse 
microbiomes, and the 4S Tg mice exhibit increased 
Gemella morbillorum, Lactobacillus murinus and 
Lactobacillus acidophilus, suggesting that alteration 
of CEACAM1-4S expression can change the relative 
populations of certain microorganisms in the gut [31]. 
The CEABAC mouse model expresses CEACAM5, 
CEACAM6, and CEACAM7 in various tissues and almost 
matches the expression patterns in humans. This bacterial 
artificial chromosome does not include CEACAM4 and 8, 
and the model utilizes continued expression of endogenous 
CEACAM1. Nonetheless, in the CEABAC mice, a high 
fat and high sugar diet, termed a “Western diet,” modifies 
the composition of the gut microbiome and alters the 
environment in the intestines, leading to increased 
susceptibility to AIEC, supporting the idea that IBD is a 
multifactorial disease involving environmental and genetic 
factors [121]. This model has also been used to describe an 
approach to treating colitis with CAR-Treg cells specific 
to CEA [48]. In this model, CAR-Treg cells targeted 
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Table 1: Mouse models involved in studying CEACAM biology
Gene(s) and 
organism 
of origin

Murine model Model design Disease 
relevance Model phenotype Refs 

CEACAM1
Mouse

CEACAM1 KO
CEACAM1 knockout 
(C57BL/6)

Disruption of CEACAM1 
exon 1 and 2 with 
neomycin cassette

Liver 
cancer

By 3 mo, mice develop pericellular 
liver fibrosis
By 5 mo, mice exhibit increased 
liver mass and hepatic triglyceride 
content.
By 3–12 mo, mice show 
accelerated progression to hepatic 
steatosis.
By 12–14 mo, mice show a higher 
number and significantly larger 
lipid vesicles.
Increased susceptibility to NASH, 
portal inflammation, and lobular 
inflammation.

[137, 
138]

CEACAM1
Mouse

CEACAM1 KO
CEACAM1 knockout 
(C57BL/6)

Disruption of CEACAM1 
exon 1 and 2 with 
neomycin cassette 

Colon 
cancer

By 22 mo, mice do not 
spontaneously develop colon 
tumors

[81]

CEACAM1a
Mouse

CEACAM1a KO
CEACAM1 knockout 
(C57BL/6)

Disruption of CEACAM1a 
exon 1 and 2 with 
neomycin cassette 

Hepatitis By 3 wk, mice inoculated with 
106 PFU of Mouse hepatitis virus 
(MHV)-A59 were fully resistant 
to MHV-A59 infection by both 
intranasal and intracerebral routes

[22]

CEACAM1
Rat

Mutant CEACAM1 
(L-SACC1) 
Liver Specific 
overexpression of 
dominant negative 
phosphorylation- defective 
S503A-CEACAM1
(C57BL/6 × FVB)

Insertion of rat CEACAM1 
intron 1 between NdeI at nt 
10 in exon 1 and BamHI at 
nt 313 in exon 2 

Type 2 
diabetes

By 3 mo, L-SACC1 mice exhibit 
insulin resistance

[124]

CEACAM1
Rat

Mutant CEACAM1 
(L-SACC1)
Liver Specific 
overexpression of 
dominant negative 
phosphorylation- defective 
S503A-CEACAM1
(C57BL/6 × FVB)

Insertion of rat CEACAM1 
intron 1 between NdeI at nt 
10 in exon 1 and BamHI at 
nt 313 in exon 2

Liver 
cancer

Mice exhibit increased hepatocyte 
proliferation, visceral obesity, and 
levels of circulating adipokines

[80]

CEACAM1 
Human

hCEACAM1 transgenic 
mouse (huTg)
CEACAM1 heterozygosity
(C57/BL6 × FVB/NJ)

BAC3 and BAC5 
sites flanking human 
CEACAM1 gene with 
BAC2 covering a large 
region proximal to 
human CEACAM1 on 
chromosome 19

Gonorrhea, 
meningitis

Mice display increased levels of 
Neisseria Opa52 positive bacteria 
bound to neutrophils. 

[61]

CEACAM1
Human

hCEACAM1 transgenic 
mouse (huTg)
CEACAM1 heterozygosity
(C57/BL6 × FVB/NJ) 

BAC3 and BAC5 sites 
flanking hCEACAM1 
gene with BAC2 covering 
a large region proximal 
to human CEACAM1 on 
chromosome 19

Liver 
cancer

By 24 wk, mice have both 
increased susceptibility to 
liver cancer and increased intake of 
diacyl glycerides.
By 25 mo, 17.6% of CEACAM −/− 
mice survived (compared to 83.3% 
of WT).
By 25 mo, 38% of mice die from 
liver cancer (compared to 0% 
of WT).

[139] 
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CEACAM1-
4L
Human

hCEACAM1-4L transgenic 
mouse 
T cell-specific 
overexpression of the 
CEACAM-4L  
(C57BL/6 mice) 

EcoRI sites flanking 
VACD2 cassette, cloned 
into pBS-SK(-), driven by 
hCD2 promoter

Cancer Decreased T cell proliferation [34]

CEACAM1 
Human,
Mouse

hCEACAM1+/+ × 
msCeacam1−/−

msCEACAM1 knockout 
and hCEACAM1 
expression
(C57BL/6) 

hCEACAM1 transgenic 
mice were back-crossed 
into the C57BL/6 
background, and then 
crossed with mouse ceacam 
−/− mice to generate 
human CEACAM1 only 
expressing transgenic mice 

Chronic 
viral 
infection

Mice exhibit increased resistance to 
lymphocytic choriomeningitis virus

[37]

CEACAM3, 
CEACAM5, 
CEACAM6, 
CEACAM7
Human

CEABAC10
Expression of 
hCEACAM3, 
hCEACAM5, 
hCEACAM6, and 
hCEACAM7

hCEABAC DNA 
was cloned into the 
pBeloBAC11 vector at the 
HindIII restriction site, 
and flanked by two NotI 
restriction sites.  

IBD By day 6, CEABAC10 mice have 
a 3.0-fold increase in intestinal 
permeability and disruption of 
mucosal integrity in a type 1 pili-
dependent mechanism compared to 
WT mice

[140]

CEACAM3, 
CEACAM5, 
CEACAM6, 
CEACAM7
Human

CEABAC2 or 
CEABAC10  
(dependent on transgene 
copy number)

hCEABAC DNA 
was cloned into the 
pBeloBAC11 vector at the 
HindIII restriction site, 
and flanked by two NotI 
restriction sites.  

Colon 
cancer

By 20 wk post treatment, mice 
have more than a 2-fold increase in 
mean tumor load relative to their 
wild-type littermates

[141]

CEACAM3, 
CEACAM5, 
CEACAM6, 
CEACAM7
Human

CEABAC10
Expression of 
hCEACAM3, 
hCEACAM5, 
hCEACAM6, and 
hCEACAM7
(C57BL/6) 

hCEABAC DNA 
was cloned into the 
pBeloBAC11 vector at the 
HindIII restriction site, 
and flanked by two NotI 
restriction sites. 

IBD Mice express no significant change 
in the intestinal microbiome

 
[121]

CEACAM1, 
CEACAM3, 
CEACAM6
Human

hCEACAMall
Myeloid cell-
specific expression 
of hCEACAM1, 
CEACAM3 and 
CEACAM6
(C57BL/6)

Cross-breeding between 
CEABAC10 mice and 
hCEACAM1 mice

Gastric 
cancer

Increased susceptibility to 
Helicobacter Pylori translocation 
of CagA into neutrophils

[142]

towards CEA were administered to CEABAC mice in 
which colitis was induced by chemical methods such as 
dextran sodium sulfate ingestion, or by administering 
CEA specific CAR CD4+ effector T cells that would lead 
to inflammation. The mice treated with CAR Treg cells 
had reduced colitis morbidity in both models of colitis 
[48]. Tissue from CEABAC mice was used to analyze the 
effects of compounds that impede the binding of AIEC 
[122]. However, the limitations of this model are not to be 
understated. The interaction that usually exists between 
human CEACAM6 and human CEACAM1 does not exist 
in this model, as murine CEACAM1 is expressed, which 
impedes the ability to study the interactions of human 
CEACAM6 and human CEACAM1 and their potential 
immune effects [40]. Of note, human CEACAMs are 
heavily modified post-translationally and the machinery 

for doing so is not fully present in a mouse, leading to a 
complex problem to fix [20]. 

Other murine models have also been developed, 
notably a human CEACAM5 transgenic mouse [21], a 
human CEACAM1 transgenic mouse [61], and a dominant 
negative phosphorylation defective CEACAM1 mutant 
that is overexpressed in the liver (L-SACC mouse) [123]. 
The L-SACC mice proved their utility in early studies that 
investigated the role of CEACAM1 in the clearance of insulin 
and insulin receptors and its effects on metabolism and the 
liver [123, 124]. Studies involving the CEACAM5 transgenic 
mouse focused mainly on developing therapies that targeted 
the CEACAM5 protein in cancer [49, 125–127]. They were 
also used to demonstrate the ability of a CEACAM5 antibody 
to recognize liver metastasis in colorectal cancer [128]. The 
mouse models are outlined in Table 1.
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PERSPECTIVE

CEACAM1, 5, and 6 have shown their importance 
in gastrointestinal pathologies as they are closely 
involved with immune regulation, tumorigenesis, tumor 
suppression, and pathogen binding. Interrupting the 
interactions of CEACAM family members seems to be an 
interesting avenue of research, as it may be a useful tool 
in cancer therapy [106], and regulating immune activity 
in the context of IBD [57]. However, much work has yet 
to be done in regard to the role of CEACAMs in cellular 
signaling and their effects on microbiome regulation. 

Key questions that remain unanswered are whether 
CEACAMs are drivers or sensors or both of the gut 
microbiome and their signaling pathways/axes from 
the gut to the liver and brain in modulating disease and 
cancer. Some of these can be addressed through existing 
mouse models such as CEACAM1. However, for the most 
part, CEACAM5 and 6, which are expressed in humans 
but not rodents, these interactions could be addressed 
through new recent and technological advances, such as 
STORM (a super-resolution light microscopy method that 
uses fluorescent probes to separate overlapping regions of 
individual molecules so that the position of each molecule 
can be more clearly determined, allows for single-molecule 
imaging and creation of three-dimensional fluorescence 
images of cells and tissues), and Cryo-electron microscopy 
(CryoEM)- a technique that flash-freezes microscopic 
protein samples in a single-molecule-thick layer of vitreous 
ice, provides new insight into the structure and assembly 
of macromolecules [129, 130]. Similarly, organoids self-
assembled in vitro three-dimensional structures that are 
primarily generated from primary tissues or stem cells, 
mimic the complex aspects of their organ counterparts 
[131]. Organoids simulating colorectal cancer, pancreatic 
cancer, the gut microbiome, and HCC could prove to 
be an important next step. In addition, liver organoids, 
expressing hepatocytes, endothelial cells, stellate cells, 
cholangiocytes, mesenchymal, and Kupffer cells, have 
been developed to explore fibrosis, NAFLD, hepatobiliary 
functions, and transplant capabilities [132–136]. 
Combining CRISPR and organoid technology, expressing 
different levels of CEACAMs in liver organoids, may 
contribute to clarifying the effect of obesity and diet on 
CEACAM expression and adhesion in HCC. AlphaFold, a 
software that predicts the 3D structure of a protein based 
on its genomic sequence will likely prove vital in exploring 
the lesser-known CEACAMs, including CEACAM4, 
CEACAM8, CEACAM16, CEACAM18, CEACAM19, 
CEACAM20, and CEACAM21, in pathology, oncology, 
the immune system, and the microbiome.
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